Minggu, 18 November 2012

Tembaga(II)Ammonium Berhidrat dan Tembaga (II) Tetraamin Sulfat Berhidrat


                                              
Hari/Tanggal : Jumat / 5 Oktober2012

I.  TUJUAN
Mempelajari pembuatan tembaga(II) ammonium sulfat berhidrat dan tembaga (II) tetra amin   sulfat berhidrat.

II. DASAR TEORI

            Tembaga (Cu) merupakan salah satu logam yang paling ringan dan paling aktif. Cu+ mengalami disproporsionasi secara spontan pada keadaan standar (baku). Hal ini bukan berarti senyawa larutan Cu (I) tidak mungkin terbentuk. Untuk menilai pada keadaan bagaimana Cu (I) dan Cu (II) terbentuk, yaitu membuat (Cu+) cukup banyak pada larutan air, Cu+ akan berada pada banyak jumlah (sebab konsentrasinya harus sekitar dua juta dikalikan pangkat dua dari Cu+). Disproporsionasi ini akan menjadi sempurna. Di lain pihak jika Cu+ dijaga sangat rendah (seperti pada zat yang sedikit larut atau ion kompleks mantap). Cu2+ sangat kecil dan tembaga (I) menjadi mantap (Petrucci, 1987 : 350).
Tembaga (Cu) adalah logam merah muda yang lunak, dapat di tempa dan liat. Tembaga melebur pada 1038oC. Karena potensial elektroda standarnya positif (+0,34 V untuk pasangan Cu / Cu+), tembaga tidak larut dalam asam klorida dan asam sulfat encer, meskipun dengan adanya oksigen ia dapat larut sedikit. Asam nitrat yang sedang pekatnya (8M) dengan mudah melarutkan tembaga (Svehla, 1990 : 229).
Tembaga membentuk senyawa dengan tingkat oksidasi +1 dan +2, namun hanya tembaga (II) yang stabil dan mendominasi dalam larutannya. Dalam air, hampir semua garam tembaga (II) berwarna biru oleh karena warna ion kompleks koordinasi enam [Cu(H2O)6]2+. Reaksi ion Cu+ dengan OH- pada berbagai konsentrasi bergantung pada metodenya. Penambahan ion hidroksida ke dalam larutan tembaga (II) sulfat (0.1-0,5 M) secara bertetes dengan kecepatan ~ 1 mL/menit menyebabkan terjadinya endapan gelatin biru muda dari garam tembaga (II) hidroksida sulfat, bukan endapan Cu(OH)2 (Sugiarto, 2003 : 569).
            Senyawa tembaga bersifat diamagnetik. Tembaga sulfit teroksidasi superficial dalam udara kadang menghasilkan lapisan warna hijau hidroksida karbonat dan hidrokso sulfat dan SO2. Di atmosfer tembaga mudah larut dalam asam nitrat dan asam sulfat dengan adanya oksigen. Kestabilan relatif kepro dan kopri diartikan dengan potensial Cu*= 0,52 V dan Cu+ = 0,153 V. Kestabilan relatif tergantung pada sulfat anion dan ligan yang cukup beragam dengan pelarut/sifat fisik atom tetangganya dalam kristal. Pelarutan tembaga hidroksida karbonat dan sebagainya dalam asam yang dihasilkan akuo hijau dituliskan [Cu(H2O)6]2+. Diantara berbagai kristal hidratnya adalah sulfat hidratnya adalah sulfat biru CuSO4.5H2O yang paling lazim. CuSO4.5H2O dapat dihidrasi menjadi zat anhidrat yang berwarna putih. Penambahan ligan menyebabkan kompleks dengan pertukaran molekul air secara berurutan (Syukri, 1999 : 321).

III.  ALAT DAN BAHAN
       Alat:
     - Gelas beker 50 mL
     - Batang pengaduk
     - Kaca arloji
     - Corong
     - Kertas saring
     - Gelas ukur
     - Pipet tetes
     - Mortar dan alu

Bahan:
-  Aquadest
-  CuSO4 serbuk
-  NH4OH pekat
-  Alcohol 96 %
                            
IV. CARA KERJA












V. HASIL PENGAMATAN
1.      Pembuatan tembaga (II) ammonium sulfat hidrat CuSO4 (NH4)2SO4.6H2O

No.
Langkah Percobaan
Hasil Pengamatan
1
Ditimbang CuSO4.5H2O dan (NH4)2SO4
Massa CuSO4.5H2O = 5 gr ; Kristal berwarna biru muda
Massa (NH4)2SO4 = 5 gr ; Kristal berwarna hijau muda
2
Dilarutkan dalam 12 ml air panas

3
Kristal disaring, dikeringkan dan ditimbang
Warna Kristal yang terbentuk = biru
Massa Kristal yang terbentuk = 8,79 gr



2.      Pembuatan tembaga (II) tetra amin sulfat hidrat Cu(NH3)4SO4.6H2O

No.
Langkah Percobaan
Hasil Pengamatan
1
Ditimbang CuSO4.5H2O
Massa CuSO4.5H2O = 6,25 gr
2
Dilarutkan dalam H2O
Warna campuran = biru pekat
3
Ditambahkan NH4OH kemudian ditambahkan sedikit demi sedikit alcohol
Warna larutan dan endapan = ungu
4
Endapan disaring, dicuci dengan campuran larutan NH4OH dan alcohol
Warna endapan yang disaring = ungu
5
Endapan yang telah dikering ditimbang
Massa endapan + kertas saring = 7,13 gr


VI.      VI. PERHITUNGAN

1. Pembuatan Tembaga (II) ammonium sulfat hidrat CuSO4(NH4)2SO4.6H2O
Diketahui :
M CuSO4(NH4)2SO4.6H2O
                = 5,12 gram
Massa CuSO4.5H2O
                           = 5 gram
Massa (NH4)2SO4
                               = 5 gram
BM CuSO4.5H2O                               = 249,54 g/mol
BM (NH4)2SO4
                                   = 132 g/mol
BMCuSO4(NH4)2SO4.6H2O
              = 399,54 g/mol
Ditanya  : % rendemen...?
Penyelesaian :
Mol CuSO4.5H2O       = 5 g/ 249,54 g/mol = 0,02 mol
Mol (NH4)2SO4           = 5 g/ 132 g/mol = 0,03 mol

CuSO4.5H2O   +    (NH4)2SO4   →       CuSO4(NH4)2SO4.6H2O
m :
       0,02 mol                      0,03 mol                           -
r   :       0,02 mol                      0,02 mol                         0,02 mol
s   :
       -                                   0,01 mol                         0,02 mol
Massa CuSO4(NH4)2SO4.6H2         = mol CuSO4(NH4)2SO4.6H2O x BM CuSO4(NH4)2SO4.6H2O
      = 0,02 mol x 399,54 g/mol           
      = 7,99 gram
% rendemen = ( 5,12 gram / 7,99 gram) x 100 % = 64,08 %

2. Pembuatan Tembaga (II) tetra amin sulfat hidrat Cu(NH3)4SO4.6H2O
Diketahui :
Massa Cu(NH3)4SO4.6H2O
     =  4,08 gram
BM CuSO4.5H2O
                   = 249,54 g/mol
BM Cu(NH3)4SO4.6H2O
        =  321,54 g/mol
V NH3 15 N
                            = 10 mL
Ditanya  : % rendemen...?
Penyelesaian  :
Mol CuSO4.5H2O                    = 6,25 g / 249,54 g/mol = 0,025 mol
Mol Cu(NH3)4SO4.6H2O        = 6,25 g / 321,54 g/mol = 0,015 mol
CuSO4.5H2O    +       4NH3      →        Cu(NH3)4SO4.6H2O
m :     0,025 mol       0,015 mol                         -
r   :    0,025 mol        0,1 mol                        0,025 mol
s  :         -                   0,05 mol                      0,025 mol
MassaCu(NH3)4SO4.6H2O      = mol Cu(NH3)4SO4.6H2O x BMCu(NH3)4SO4.6H2O
                                                   = 0,025 mol x 321,54 g/mol     
                                             = 8,038 gram
% rendemen = (4,08 gram / 8,038 gram) x 100 % = 50,75 %


VII.  VII.    VII. PEMBAHASAN
         Praktikum kali ini, praktikan melakukan pecobaan mengenai Tembaga (II) Ammonium Berhidrat dan Tembaga (II) Tetra Amin Sulfat Berhidrat. 
Percobaan pertama, yaitu membuat garam tembaga(II)amonium, praktikan menggunakan CuSO4.5H2O dan (NH4)2SO4 masing-masing sebanyak 5 gram kedaunay dilarutkan di dalam 12 ml aquadest panas. Pembuatan garam rangkap tembaga (II) ammonium sulfat, dengan melarutkan kristal CuSO4.5H2O dan Kristal (NH4)2SO4 dalam aquadest menghasilkan larutan yang berwarna biru muda. Kemudian larutan tersebut didinginkan. Larutan yang sudah dingni tersebut di saring menggunakan kertas saring, kemudian endapan bresama dengan kertas saring ditimbang. Berdasarkan hasil percobaan, massa kristal yang didapat adalah 5,12 gram. 

Reaksi yang terjadi adalah sebagai berikut :
CuSO4.5H2O + (NH4)2SO→ CuSO4(NH4)2SO4.6H2O
Berdasarkan persamaan reaksi diatas, garam yang dihasilkan adalah garam rangkap yang berasal dari dua larutan garam, yaitu CuSO4.5H2O dan (NH4)2SO4.
Percobaan berikutnya adalah pembuatan garam tembaga (II) tetra amin sulfat berhidrat. Pembuatannya dilakukan dengan melarutkan Serbuk CuSO4.5H2O ke dalam Aquaeest dan larutan NH4OH. Penambahan aquadest ini dimaksudkan untuk mengencerkan NH4OH. Proses ini dilakukan dalam lemari asam, karena reaksi ini menghasilkan gas yang berbau menyengat yang berasal dari larutan amonia pekat yang digunakan.  Dari hasil campuran ini, terbentuk larutan yang berwarna biru tua. Selanjutnya ke dalam campuran biru tua tersebut ditambahkan alkohol 95 % sedikit demi sedikit, hal ini bertujuan untuk mengurangi energi solvasi ion-ion sehingga pembentukan kristal dapat terjadi lebih sempurna. Praktikan menggunakan alkohol, karena alkohol merupakan pelarut yang baik untuk senyawa ionik. Selanjutnya, campuran ini didiamkan. Endapan biru tua yang terbentuk kemudian disaring, lalu dicuci dengan campuran amonia pekat dan alkohol, kemudian dengan larutan alkohol. Pencucian dilakukan untuk memurnikan endapan kristal yang terbentuk dari pengotor-pengotor yang tidak diinginkan yang mungkin saja terdapat dalam garam yang terbentuk pada saat dilakukan penyaringan sebagian kristal tersebut ikut terbawa bersama filtrat. Berdasarkan hasil percobaan, massa endapan yang terbentuk sebesar 4,08 gram, dengan persen hasil sebesar 50,75 %. Reaksi yang terjadi pada saat pembentukan garam kompleks ini adalah:
CuSO4.5H2O+ 4NH Cu(NH3)4SO4.5H2O

VIII. KESIMPULAN
1.      Massa kristal CuSO4(NH4)2SO4.6H2O adalah 5,12 gram.
2.      Persen rendemen CuSO4(NH4)2SO4.6H2O adalah 64,08%.
3.      Massa kristal Cu(NH3)4SO4.6H2O adalah 4,08 gram, kristal berwarna biru tua.
4.      Persen rendeman Cu(NH3)4SO4.6H2O adalah 50,75%.


DAFTAR  PUSTAKA

Day & Underwood. 1999. Analisis Kimia Kuantitatif. Edisi Kelima.Jakarta : Erlangga.
Muliyono. 2005. Kamus Kimia. Bandung : Bumi AksaraWilkinson.
Harjadi. 1993. Ilmu Kimia Analitik Dasar.Jakarta : PT. Gramedia.


PERTANYAAN


1. Apa tujuan pencucian dengan menggunakan eter?
Pencucian endapan kristal pada pembuatan garam kompleks bertujuan untuk melarutkan alkohol maupun senyawa organik yang masih terkandung dalam kristal garam.


2. Apa jenis garam yang dihasilkan dari percobaan ini ?
Garam yang dihasilkan dalam percobaan ini ada dua jenis :
Percobaan pertama megnhasilkan garam rangkap yaitu garam tembaga (II) ammonium sulfat hidrat
Percobaan kedua mnghasilkan garam kompleks yaitu garam tembaga (II) tetra amin sulfat berhidrat.

 3. Bedakan antara garam kompleks dengan garam sederhana?
Garam kompleks adalah garam-garam yang mengandung ion-ion kompleks.
Garam sederhana  adalah garam yang terbentuk
dari hasil kristalisasi larutan dua campuran atau lebih.



Jumat, 26 Oktober 2012

KOROSI BESI

I.      Tujuan
  • ·    Mengamati perubahan/perkaratan besi
  • ·    Mengamati proses oksidasi dan reduksi yang terjadi pada besi

II.      Dasar Teori
            Besi merupakan logam yang menempati urutan kedua dari logam-logam yang umum terdapat pada kerak bumi. Besi cukup reaktif, besi bila dibiarkan di udara terbuka untuk beberapa lama mengalami perubahan warna yang lazim disebut perkaratan besi. Proses perubahan besi menjadi besi berkarat merupakan reaksi redoks yang melibatkan oksigen :
Fe (s) + O2 -------> Fe2O3
Korosi atau perkaratan logam merupakan proses oksidasi sebuah logam dengan udara atau elektrolit lainnya, dimana udara atau elektrolit akan mengami reduksi, sehingga proses korosi merupakan proses elektrokimia. Korosi dapat terjadi oleh air yang mengandung garam, karena logam akan bereaksi secara elektrokimia dalam larutan garam (elektrolit). Pada proses elektrokimianya akan terbentuk anoda dan katoda pada sebatang logam. Contoh korosi yang paling lazim adalah perkaratan besi. Korosi dapat juga diartikan sebagai serangan yang merusak logam karena logam bereaksi secara kimia atau elektrokimia dengan lingkungan. Ada definisi lain yang mengatakan bahwa korosi adalah kebalikan dari proses ekstraksi logam dari bijih mineralnya. Contohnya, bijih mineral logam besi di alam bebas ada dalam bentuk senyawa besi oksida atau besi sulfida, setelah diekstraksi dan diolah, akan dihasilkan besi yang digunakan untuk pembuatan baja atau baja paduan. Selama pemakaian, baja tersebut akan bereaksi dengan lingkungan yang menyebabkan korosi (kembali menjadi senyawa besi oksida).
Faktor yang berpengaruh terhadap korosi dapat dibedakan menjadi dua, yaitu yang berasal dari bahan itu sendiri dan dari lingkungan. Faktor dari bahan meliputi kemurnian bahan, struktur bahan, bentuk kristal, unsur-unsur kelumit yang ada dalam bahan, teknik pencampuran bahan dan sebagainya. Faktor dari lingkungan meliputi tingkat pencemaran udara, suhu, kelembaban, keberadaan zat-zat kimia yang bersifat korosif dan sebagainya. Bahan-bahan korosif (yang dapat menyebabkan korosi) terdiri atas asam, basa serta garam, baik dalam bentuk senyawa an-organik maupun organik. Penguapan dan pelepasan bahan-bahan korosif ke udara dapat mempercepat proses korosi. Udara dalam ruangan yang terlalu asam atau basa dapat mempercepat proses korosi peralatan elektronik yang ada dalam ruangan tersebut.
Flour, hydrogen flourida beserta  persenyawaan – persenyawaan dikenal sebagai bahan korosif. Dalam industri, bahan ini umumnya dipakai untuk sintesa bahan-bahan organik. Ammoniak (NH3) merupakan bahan kimia yang cukup banyak digunakan dalam kegiatan industri. Pada suhu dan tekanan normal, bahan ini berada dalam bentuk gas dan sangat mudah terlepas ke udara. Ammoniak dalam kegiatan industri umumnya digunakan untuk sintesa bahan organik, sebagai bahan anti beku didalam alat pendingin, juga sebagai bahan untuk pembuatan pupuk. Bejana-bejana penympan ammoniak harus selalu diperiksa untuk mencegah terjadinya kebocoran dan pelepasan bahan ini ke udara. Embun pagi saat ini umumnya mengandung aneka partikel aerosol, debu serta gas-gas asam seperti NOx dan XOx. Dalam batu bara terdapat belerang atau sulfur (S) yang apabila dibakar berubah menjadi oksida belerang.
  Masalah utama berkaitan dengan peningkatan penggunaan batubara adalah dilepaskannya gas-gas polutan seperti oksida nitrogen (NOx) dan oksida belerang (SOx). Walaupun sebagian besar pusat tenaga listrik batubara telah menggunakan alat pembersih endapan (presipitator) untuk membersihkan pertikel-partikel kecil dari asap batubara, namun NOx dan SOx yang merupakan senyawa gas dengan bebasnya naik melewati cerobong dan terlepas ke udara bebas. Di dalam udara, kedua gas tersebut dapat berubah menjadi asam nitrat (HNO3) dan asam sulfat (H2SO4).
    Oleh sebab itu, udara menjadi terlalu asam dan bersifat korosif dengan terlarutnya gas-gas asam tersebut didalam udara. Udara yang asam ini tentu dapat berinteraksi dengan apa saja, termasuk komponen-komponen renik didalam peralatan elektronik. Jika hal itu terjadi, maka proses korosi tidak dapat dihindari lagi. Korosi yang menyerang piranti maupun komponen-komponen elektronika dapat mengakibatkan kerusakan bahkan kecelakaan. Karena korosi ini, maka sifat elektrik komponen-komponen elektronika dalam komputer, televisi, video, kalkulator, jam digital dan sebagainya menjadi rusak. Korosi dapat menyebabkan terbentuknya lapisan nonkonduktor pada komponen elektronik.
 Oleh sebab itu, dalam lingkungan dengan tingkat pencemaran tinggi, aneka barang mulai dari komponen elektronika, renik sampai jembatan baja semakin rusak, bahkan hancur karena korosi. Dalam beberapa kasus, hubungan pendek yang terjadi pada peralatan elektronik dapat menyebabkan terjadinya kebakaran yang menimbulkan kerugian bukan hanya dalam bentuk kehilangan atau kerusakan materi, tetapi juga korban nyawa.
Flour, hydrogen flourida beserta  persenyawaan – persenyawaan dikenal sebagai bahan korosif. Dalam industri, bahan ini umumnya dipakai untuk sintesa bahan-bahan organik. Ammoniak (NH3) merupakan bahan kimia yang cukup banyak digunakan dalam kegiatan industri. Pada suhu dan tekanan normal, bahan ini berada dalam bentuk gas dan sangat mudah terlepas ke udara. Ammoniak dalam kegiatan industri umumnya digunakan untuk sintesa bahan organik, sebagai bahan anti beku didalam alat pendingin, juga sebagai bahan untuk pembuatan pupuk. Bejana-bejana penympan ammoniak harus selalu diperiksa untuk mencegah terjadinya kebocoran dan pelepasan bahan ini ke udara. Embun pagi saat ini umumnya mengandung aneka partikel aerosol, debu serta gas-gas asam seperti NOx dan XOx. Dalam batu bara terdapat belerang atau sulfur (S) yang apabila dibakar berubah menjadi oksida belerang.
  Masalah utama berkaitan dengan peningkatan penggunaan batubara adalah dilepaskannya gas-gas polutan seperti oksida nitrogen (NOx) dan oksida belerang (SOx). Walaupun sebagian besar pusat tenaga listrik batubara telah menggunakan alat pembersih endapan (presipitator) untuk membersihkan pertikel-partikel kecil dari asap batubara, namun NOx dan SOx yang merupakan senyawa gas dengan bebasnya naik melewati cerobong dan terlepas ke udara bebas. Di dalam udara, kedua gas tersebut dapat berubah menjadi asam nitrat (HNO3) dan asam sulfat (H2SO4).
  Oleh sebab itu, udara menjadi terlalu asam dan bersifat korosif dengan terlarutnya gas-gas asam tersebut didalam udara. Udara yang asam ini tentu dapat berinteraksi dengan apa saja, termasuk komponen-komponen renik didalam peralatan elektronik. Jika hal itu terjadi, maka proses korosi tidak dapat dihindari lagi. Korosi yang menyerang piranti maupun komponen-komponen elektronika dapat mengakibatkan kerusakan bahkan kecelakaan. Karena korosi ini, maka sifat elektrik komponen-komponen elektronika dalam komputer, televisi, video, kalkulator, jam digital dan sebagainya menjadi rusak. Korosi dapat menyebabkan terbentuknya lapisan nonkonduktor pada komponen elektronik.
  Oleh sebab itu, dalam lingkungan dengan tingkat pencemaran tinggi, aneka barang mulai dari komponen elektronika, renik sampai jembatan baja semakin rusak, bahkan hancur karena korosi. Dalam beberapa kasus, hubungan pendek yang terjadi pada peralatan elektronik dapat menyebabkan terjadinya kebakaran yang menimbulkan kerugian bukan hanya dalam bentuk kehilangan atau kerusakan materi, tetapi juga korban nyawa.
  Deret Volta dan hukum Nernst akan membantu untuk dapat mengetahui kemungkinan terjadinya korosi. Kecepatan korosi sangat tergantung pada banyak faktor, seperti ada atau tidaknya lapisan oksida, karena lapisan oksida dapat menghalangi beda potensial terhadap elektrodalainnya yang akan sangat berbeda bila masih bersih dari oksida.

III.      Alat dan Bahan
Alat :  
  • Gelas piala 250 mL
  • Cawan petri
  • Paku beton ukuran sama besar
  • Stopwatch
Bahan:
  • Larutan NaCl 0,5 M
  • Agar-agar berwarna putih
  • Fenolftalein
  • K3(Fe(CN)6) 0,5 M
  • NaOH 0,5 M
  • HCl 0,5 M
  • Alumunium
  • Aquadest
IV. Prosedur Kerja
  • Dimasukkan satu bungkus agar-agar ditambahkan aquadest 210 ml ke dalam gelas piala 250 ml dipanaskan diatas penanggas air.
  • Dimasukkan paku beton ke dalam masing-masing cawan petri
  • Disediakan 6 paku berukuran sama besar, dibersihkan.
  • Dituangkan hasil agar-agar panas sebanyak 35 ml kedalam masing-masing cawan petri hingga menutupi seluruh paku.
  • Ditambahkan 3,6 ml Larutan NaCl, NaOH, K3(Fe(CN)6), Fenolftalin (PP), HCl di masing-masing cawan petri.
  • Diamati dan dicatat apa yang terjadi selama 30 menit, 1 jam, 2 jam, 6 jam dan 72 jam.
V. Hasil pengamatan

VI. Pembahasan

Praktikum kali ini mengamati proses korosi besi dengan memberikan berbagai perlakuan terhadap sampel besi yang digunakan. Sampel besi yang digunakan dalam percobaan ini yaitu 6 jenis besi dengan jumlah tiap jenisnya sebanyak 6 pcs. Paku adalah salah satu bahan yang sangat mudah teroksidasi oleh oksigen yang ada di udara bebas. Dimana oksigen akan membentuk lapisan oksida melapisi permukaan logam, tetapi oksida logam besi ini mempunyai pori-pori sehingga mudah ditembus oleh oksigen atau uap air. Dengan demikian, keadaan ini memungkinkan reaksi oksidasi secara berkelanjutan pada bagian awal lapisan oksida yang telah terbentuk sebelumnya. Demikian seterusnya sampai semua logam besi teroksidasi, menyebabkan perubahan bentuk yang gembur dan keropos, yang pada akhirnya akan mengurangi bahkan merusak penampilan dan kekuatan logam besi tersebut.
Jenis besi yang digunakan yaitu paku beton, paku besar, paku kecil, paku payung besar, paku payung kecil dan jarum pentul. Sampel-sampel besi ini disusun menjadi 6 kelompok dimana setiap kelompok mendapatkan perlakuan percobaaan yang berbeda. Percobaan ini menggunakan media agar-agar. Agar-agar berfungsi sebagai media indikator, untuk mengetahui tempat-tempat reaksi anoda dan katoda terjadi serta untuk mencegah terjadinya reaksi antara logam besi dari sampel dengan oksigen di ruangan.
Terlebih dahulu, agar-agar dilarutkan dalam air mendidih, karena agar-agar tidak larut dalam air dingin. Setiap kelompok sampel masing-masing dimasukkan kedalam cawan petri. Kemudian agar-agar dimasukkan kedalam semua cawan petri yang telah berisi sampel sampai logam besi terendam semua oleh agar-agar. Selanjutnya, setiap kelompok sampel diberikan 6 perlakuan berbeda. Pada cawan pertama yang berisi agar-agar digunakan sebagai kontrol dalam percobaan ini. Cawan kedua berisi kontrol yang ditambahkan fenolftalein. Cawan ketiga berisi kontrol yang ditambahkan K3(Fe(CN)6).  Cawan keempat berisi kontrol yang ditambahkan NaCl. Cawan kelima berisi kontrol yang ditambahkan NaOH. Cawan keenam berisi kontrol yang ditambahkan HCl. Waktu pengamatan dilakukan sebanyak 5 waktu yaitu 30 menit, 1 jam, 2 jam dan 3 hari.
Berdasarkan hasil percobaan, ketika paku ditambahkan HCl, disekitar paku akan terlihat gelembung-gelembung hal itu disebabkan asam yang mempercepat proses pengkaratan. karena potensial korosi dalam suasana asam lebih besar dari suasana basa sehingga reaksi korosi akan lebih cepat berlangsung dalam lingkungan asam. Jadi, semua jenis besi akan berkarat bila ditambahkan oleh asam.
Ketika ditambahkan oleh indikator PP, disekeliling paku berubah warna menjadi merah muda. Perubahan ini terjadi karena adanya reaksi reduksi dari H2O yang menghasilkan OH-, warna merah muda dalam agar-agar menunjukkan tempat dimana reduksi.
Lalu penambahan K4Fe(CN)6 terbentuk warna biru kehijauan yang dominan dibagian diseluruh permukaan paku. Warna biru ini merupakan kompleks berwarna dari reaksi besi dengan [Fe(CN)6]4+. Reaksi ini menandakan bahwa diseluruh permukaan paku terjadi reaksi oksidasi dari Fe menjadi Fe3+. Ion Fe3+ membentuk kompleks pewarnaan biru prusia saat bereaksi dengan [Fe(CN)6]4+.
Pada cawan yang berisi kontrol + NaCl. NaCl merupakan larutan elektrolit. Kontak dengan elektrolit dapat mempercepat korosi karena elektrolit memberikan pengaruh, seperti jembatan garam sehingga mobilitas elektron akan makin tinggi dan korosi akan berjalan lebih cepat.
Pada cawan yang berisi kontrol + NaOH mengalami korosi yang sedikit dan hanya terjadi di sebagian permukaan paku saja. Hal ini karena potensial korosi dalam suasana asam lebih besar dari suasana basa. 
 
VI. Kesimpulan
  •     Urutan terjadinya tingkat korosi pada paku beton dengan berbagai perlakuan : Kontrol+K3(Fe(CN)6) > Kontrol+HCl > Kontrol+NaCl > Kontrol+NaOH > Kontrol+PP > Kontrol.
  •             Faktor-faktor yang mempengaruhi terjadinya korosi diantaranya : tingkat keasaman, kontak dengan elektrolit, keadaan logam besi itu sendiri, keaktifan logam, dan kontak dengan logam lain.
  •              Fungsi NaCl berfungsi sebagai jembatan garam.
 
VII. Daftar Pustaka
 
Chalid,Sri Yadial.2007.Penuntun Praktikum Kimia Anorganik.Jakarta : Fakultas Sains dan Teknologi UIN Syarif Hidayatullah Jakarta.
 Svehla, G., 1990, Buku Teks Analisis Anorganik Kualitatif Makro dan Semimikro. Jakarta : PT. Kalman Media Pustaka .
   Trethewey, K. R., dan Camberlain, J., 1991, Korosi. Jakarta : PT. Gramedia Pustaka Utama.
 
VII. Lampiran
 
 PERTANYAAN
1. Apa tanda-tanda telah terjadi proses redoks pada percobaan ini?
2. Tuliskan reaksi redoks yang terjadi!
3. Sebutkan reagen-reagen apa saja yang dapat meleburkan logam Fe?
4. Senyawa apa saja yang terdapat pada besi komersial?

Jawaban
1.  Besi berubah menjadi besi (III) oksida yaitu merupakan karat besi

2.      Fe(s) → Fe2+(aq) + 2e (x2)
            O2(g) + 4H+(aq) + 4e → 2H2O(l)


 
            4 Fe2+(aq)+ O2 (g) + (4 + 2x) H2O(l) → 2 Fe2O3x H2O + 8 H+(aq)

3.  Reagen yang dapat meleburkan logam Fe adalah K3Fe(CN)6, HCl dan NaCl

4.  Besi komersial merupakan campuran besi dan karbon. tambahan unsur Karbon ( C ) sampai dengan 1.67% (maksimal).  Dimana kandungan karbon ( C ) mempengaruhi kekerasan baja, Disamping itu, baja mengandung unsure campuran lain yang disebut paduan, misalnya Mangan ( Mn ), Tembaga (Cu), Silikon ( Si ), Belerang ( S ), dan Posfor ( P )